收录期刊

    高级检索
    杨光,王诗怡,黎东洲,等. 滨湖城市防洪智能调度与“四预”业务系统开发——以江苏无锡市运东大包围为例[J]. 中国防汛抗旱,2024,34(9):32−37. DOI: 10.16867/j.issn.1673-9264.2024293
    引用本文: 杨光,王诗怡,黎东洲,等. 滨湖城市防洪智能调度与“四预”业务系统开发——以江苏无锡市运东大包围为例[J]. 中国防汛抗旱,2024,34(9):32−37. DOI: 10.16867/j.issn.1673-9264.2024293
    YANG Guang,WANG Shiyi,LI Dongzhou,et al.Development of intelligent flood control dispatching and FEDE system for coastal Lakeside cities—A case study of Yundong Enclosure in Wuxi City,Jiangsu Province[J].China Flood & Drought Management,2024,34(9):32−37. DOI: 10.16867/j.issn.1673-9264.2024293
    Citation: YANG Guang,WANG Shiyi,LI Dongzhou,et al.Development of intelligent flood control dispatching and FEDE system for coastal Lakeside cities—A case study of Yundong Enclosure in Wuxi City,Jiangsu Province[J].China Flood & Drought Management,2024,34(9):32−37. DOI: 10.16867/j.issn.1673-9264.2024293

    滨湖城市防洪智能调度与“四预”业务系统开发以江苏无锡市运东大包围为例

    Development of intelligent flood control dispatching and FEDE system for coastal Lakeside cities—A case study of Yundong Enclosure in Wuxi City,Jiangsu Province

    • 摘要: 信息化技术的革新为水利行业发展提供了重要的机遇,但受限于历史实测资料不足,人工智能算法在滨湖平原河网地区洪涝预报中的应用存在一定困难。以江苏无锡市运东大包围为研究区域,详细阐述了城市洪涝智能预报调度的实现路径,利用水文水动力模型生成调度预案集,分别采用长短期记忆网络模型与卷积网络模型构建城市河网关注点水位智能预报方法与城市内涝风险阈值快速计算方法;以服务“四预”(预报、预警、预演、预案)业务为导向设计防洪智能预报调度系统,开发系统功能,集成专业模型与智能模型服务于业务场景应用,以实践探索为太湖滨湖城市洪涝预报调度一体化、智能化、业务化提供参考。

       

      Abstract: The innovation of information technology provides significant opportunities for the development of the water industry, but the application of artificial intelligence algorithms in flood forecasting in lake-plain river network areas faces certain difficulties due to the insufficient historical measured data. Taking the Yundong Enclosure in Wuxi City of Jiangsu Province as the research area, this paper elaborates on the implementation path of intelligent forecasting and dispatching for urban floods and waterlogging. It utilizes hydrological and hydrodynamic models to generate dispatching plan sets, and employs Long Short-Term Memory (LSTM) networks and Convolutional Neural Networks (CNN) to establish intelligent forecasting methods for water levels at key points in the urban river network and rapid calculation methods for urban waterlogging risk thresholds. Guided by the FEDE(forecasting, early warning, drilling and emergancy plan), a smart flood forecasting and dispatching system is designed to integrate professional and intelligent models to serve business scenario applications. The development of system functions provides practical insights for the integration, intelligence, and operationalization of flood forecasting and dispatching in coastal Taihu Lake cities.

       

    /

    返回文章
    返回